Biophoton emission

Biophoton emission is the spontaneous emission of ultraweak light emanating from all living systems, including man. The emission is linked to the endogenous production of excited states within the living system. The detection and characterisation of human biophoton emission has led to suggestions that it has potential future applications in medicine.

For the first time systematic measurements of the “ultraweak” photon emission of the human body (biophotons) have been performed by means of a photon detector device set up in darkness. About 200 persons have been investigated. In a particular case one person has been examined daily over several months. It turned out that this biophoton emission reflects,

(i) the left-right symmetry of the human body;

(ii) biological rhythms such as 14 days, 1 month, 3 months and 9 months;

(iii) disease in terms of broken symmetry between left and right side; and

(iv) light channels in the body, which regulate energy and information transfer between different parts. The results show that besides a deeper understanding of health, disease and body field, this method provides a new powerful tool of non-invasive medical diagnosis in terms of basic regulatory functions of the body.

Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source) as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication. A study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake.  Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials) allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more) frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. It strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.


Source: US National Library of Medicine

%d bloggers like this: